18 resultados para Fasting and lairage

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ogias D, de Andrade Sa ER, Kasai A, Moisan M, Alvares EP, Gama P. Fasting differentially regulates plasma corticosterone-binding globulin, glucocorticoid receptor, and cell cycle in the gastric mucosa of pups and adult rats. Am J Physiol Gastrointest Liver Physiol 298: G117-G125, 2010. First published October 15, 2009; doi:10.1152/ajpgi.00245.2009.-The nutritional status influences gastric growth, and interestingly, whereas cell proliferation is stimulated by fasting in suckling rats, it is inhibited in adult animals. Corticosterone takes part in the mechanisms that govern development, and its effects are regulated in particular by corticosterone-binding globulin (CBG) and glucocorticoid receptor (GR). To investigate whether corticosterone activity responds to fasting and how possible changes might control gastric epithelial cell cycle, we evaluated different parameters during the progression of fasting in 18- and 40-day-old rats. Food restriction induced higher corticosterone plasma concentration at both ages, but only in pups did CBG binding increase after short-and long-term treatments. Fasting also increased gastric GR at transcriptional and protein levels, but the effect was more pronounced in 40-day-old animals. Moreover, in pups, GR was observed in the cytoplasm, whereas, in adults, it accumulated in the nucleus after the onset of fasting. Heat shock protein (HSP) 70 and HSP 90 were differentially regulated and might contribute to the stability of GR and to the high cytoplasmic levels in pups and elevated shuttling in adult rats. As for gastric epithelial cell cycle, whereas cyclin D1 and p21 increased during fasting in pups, in adults, cyclin E slowly decreased, concomitant with higher p27. In summary, we demonstrated that corticosterone function is differentially regulated by fasting in 18-and 40-day-old rats, and such variation might attenuate any possible suppressive effects during postnatal development. We suggest that this mechanism could ultimately increase cell proliferation and allow regular gastric growth during adverse nutritional conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proline-specific dipeptidyl peptidases are emerging as a protease family with important roles in the regulation of signaling by peptide hormones related to energy balance. The treatment of neonatal rats with monosodium glutamate (MSG) is known to produce a selective damage on the arcuate nucleus with development of obesity. This study investigates the relationship among dipeptidyl peptidase IV (DPPIV) hydrolyzing activity, CD26 protein, fasting, and MSG model of obesity in 2 areas of the central nervous system. Dipeptidyl peptidase IV and CD26 were, respectively, evaluated by fluorometry, and enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction in soluble (SF) and membrane-bound (MF) fractions from the hypothalamus and hippocampus of MSG-treated and normal rats, submitted or not to food deprivation (FD). Dipeptidyl peptidase IV in both areas was distinguished kinetically as insensitive (DI) and sensitive (DS) to diprotin A. Compared with the controls, MSG and/or FD decreased the activity of DPPIV-DI in the SF and MF from the hypothalamus, as well as the activity of DPPIV-DS in the SF from the hypothalamus and in the MF from the hippocampus. Monosodium glutamate and/or FD increased the activity of DPPIV-DI in the MF from the hippocampus. The monoclonal protein expression of membrane CD26 by enzyme-linked immunosorbent assay decreased in the hypothalamus and increased in the hippocampus of MSG and/or FD relative to the controls. The existence of DPPIV-like activity with different sensitivities to diprotin A and the identity of insensitive with CD26 were demonstrated for the first time in the central nervous system. Data also demonstrated the involvement of DPPIV-DI/CD26 hydrolyzing activity in the energy balance probably through the regulation of neuropeptide Y and beta-endorphin levels in the hypothalamus and hippocampus. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The rat has been a mainstay of physiological and metabolic research, and more recently mice. This study aimed at characterizing the postprandial triglyceride profile of two members of the Muridae family: the Wistar rats (Rattus norvegicus albinus) and C57BL/6 mice (Mus musculus) plus comparing them to the profile obtained in humans. Methods: Thirty-one male and twelve female Wistar rats, ten C57BL/6 male and nine female mice received a liquid meal containing fat (17%), protein (4%) and carbohydrates (4%), providing 2 g fat/Kg. Thirty-one men and twenty-nine women received a standardized liquid meal containing fat (25%), dextromaltose (55%), protein (14%), and vitamins and minerals (6%), and providing 40 g of fat per square meter of body surface. Serial blood samples were collected at 2, 4, 6, 8 and 10 h after the ingestion in rats, at 1, 2, 3, 4, 5 and 6 h in mice and in humans at 2, 4, 6 and 8 h. Wilcoxon and Mann-Whitney tests were used. Results/Discussion: The triglyceride responses were evaluated after the oral fat loads. Fasting and postprandial triglyceridemia were determined sequentially in blood sample. AUC, AUIC, AR, RR and late peaks were determined. Conclusions: Rats are prone to respond in a pro-atherogenic manner. The responses in mice were closer to the ones in healthy men. This study presents striking differences in postprandial triglycerides patterns between rats and mice not correlated to baseline triglycerides, the animal baseline body weight or fat load in all animal groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the content of Transforming Growth Factor-beta (TGF beta) wanes in the milk of lactating rat, an increase in TGF beta is observed in the gastric epithelia concomitant with differentiation of the glands upon weaning. Whereas TGF beta has been shown to inhibit the proliferation of gastrointestinal cells in vitro, its functional significance and mechanisms of action have not been studied in vivo. Therefore, we administered TGF beta 1 (1 ng/g body wt.) to 14-day-old rats in which the gastric epithelium was induced to proliferate by fasting, and determined the involvement of signaling through Smads and the impact on epithelial cell proliferation and apoptosis. After the gavage, we observed the progressive increase of active TGF beta 1 while T beta RII-receptor remained constant in the gastric mucosa. By immunohistochemistry, we showed Smad2/3 increase at 60 min (p < 0.05) and Smad2 phosphorylation/activation and translocation to the nucleus most prominently between 0 and 30 min after treatment (p < 0.05). Importantly, TGF beta 1 inhibited cell proliferation (p < 0.05), which was estimated by BrDU pulse-labeling 12 h after gavage. Lower proliferation was reflected by increased p27(kip1) at 2 h (p < 0.05). Also, TGF beta 1 increased apoptosis as measured by M30 labeling at 60 and 180 min (p < 0.001), and by morphological features at 12 h (p < 0.05). In addition, we observed higher levels of activated caspase 3 (17 kDa) from 0 to 30 min. Altogether, these data indicate a direct effect of TGF beta 1 signaling through Smads on both inhibiting proliferation, through alteration of cycle proteins, and inducing apoptosis of gastric epithelial cells in vivo. Further, the studies suggest a potential role for both milk and tissue-expressed TG beta 1 in gastric growth during postnatal development, (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Physiological conditions of low leptin levels like those observed during negative energy balance are usually characterized by the suppression of luteinizing hormone (LH) secretion and fertility. Leptin administration restores LH levels and reproductive function. Leptin action on LH secretion is thought to be mediated by the brain. However, the neuronal population that mediates this effect is still undefined. The hypothalamic ventral premammillary nucleus (PMV) neurons express a dense concentration of leptin receptors and project to brain areas related to reproductive control. Therefore, we hypothesized that the PMV is well located to mediate leptin action on LH secretion. To test our hypothesis, we performed bilateral excitotoxic lesions of the PMV in adult female rats. PMV-lesioned animals displayed a clear disruption of the estrous cycle, remaining in anestrus for 15-20 d. After apparent recovery of cyclicity, animals perfused in the afternoon of proestrus showed decreased Fos immunoreactivity in the anteroventral periventricular nucleus and in gonadotropin releasing hormone neurons. PMV-lesioned animals also displayed decreased estrogen and LH secretion on proestrus. Lesions caused no changes in mean food intake and body weight up to 7 weeks after surgery. We further tested the ability of leptin to induce LH secretion in PMV-lesioned fasted animals. We found that complete lesions of the PMV precluded leptin stimulation of LH secretion on fasting. Our findings demonstrate that the PMV is a key site linking changing levels of leptin and coordinated control of reproduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Our aim was to evaluate the effects of a dietary regimen (suckling or early weaning) and feeding status (fed or fasted) on the distribution of transforming growth factor-beta 3 (TGF-beta 3) and TGF receptor-I (T beta RI) in the gastric epithelium of pups Methods: Wistar rats were used At 15 d, half of the pups were separated from dams and fed with hydrated powered chow On day 17, suckling and early weanling rats were subjected to fasting (17 h). Four different conditions were established. suckling fed and fasted and early weanling fed and fasted At 18 d stomachs were collected under anesthesia and were fixed in 4% formaldehyde for immunohistochemistry The number of immunostained epithelial cells per microscopic field was determined for TGF-beta 3 and T beta RI in longitudinal sections from the gastric mucosa Results: We found that during suckling, fasting reduced the number of immunolabeled cells per field of both molecules when compared with the fed group (P < 0.05), whereas in early weaning, food restriction increased TGF-beta 3 and T beta RI distributions (P < 0.05) We also observed that TGF-beta 3 and T beta RI were more concentrated in parietal cells in the upper gland in suckling pups, whereas after early weaning these were displaced to parietal and chief cells at the bottom of the gland Conclusion: Suckling and early weaning directly influence TGF-beta 3 and T beta RI distributions in the gastric epithelium in response to fasting, such that early weaning anticipates the effects observed in adult rats. Furthermore, the differential concentrations of TGF-beta 3 and T beta RI indicate that they might be important for cell proliferation events in growth control (C) 2010 Elsevier Inc. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To describe the results of a nutritional intervention programme among Japanese-Brazilians according to gender. Design: A non-controlled experimental study. Setting: The research included three points of clinical, nutritional and physical activity evaluation: at baseline (in 2005), after the first year and at the end of the second year (in 2007). The paired Student t test and multiple linear regression analysis were used to evaluate changes in the subjects` profile (clinical, nutritional and physical activity variables). Subjects: Japanese-Brazilians (n 575) of both genders, aged over 30 years. Results: We verified statistically significant reductions in body weight (0.9 kg), waist circumference (2.9 cm), blood pressure, fasting blood glucose (>3 mg/dl) and total cholesterol (>20 mg/dl) and its fractions, in both genders. We also found reductions in intake of energy (among men), protein (among women) and fat (both genders) and increases in intake of total fibre (among women) and carbohydrate (among men). Conclusions: The intervention programme indicated meaningful benefits for the intervention subjects, with changes in their habits that led to a `healthier` lifestyle positively impacting their nutritional and metabolic profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: We investigated whether lifestyle-induced changes in dietary fat quality are related to Improvements on glucose metabolism disturbances in Japanese Brazilians at high risk of type 2 diabetes Methods: One hundred forty-eight first- and second-generation subjects with impaired glucose tolerance or impaired fasting glycemia who attended a lifestyle intervention program for 12 mo were studied in the city of Bauru. State of Sao Paulo, Brazil Dietary fatty acid intakes at baseline and after 12 mo were estimated using three 24-h recalls. The effect of dietary fat intake on glucose metabolism was investigated by multiple logistic regression models Results: At baseline, mean standard deviation age and body mass index were 60 II y and 25 5 4.2 kg/m2, respectively After 12 mo. 92 subjects had normal plasma glucose levels and 56 remained in prediabetic conditions. Using logistic regression models adjusted for age, gender, generation, basal intake of explanatory nutrient, energy intake, physical activity, and waist circumference, the odds ratios (95% confidence intervals) for reversion to normoglycemia were 3 14 (1 22-8 10) in the second wrote of total w-3 fatty acid, 4 26 (1.34-13 57) in the second tunic of eicosapentaenoic acid, and 280 (1 10-7.10) in the second tertile of linolenic acid. Similarly. subjects in the highest wrote of w-3.w-6 fatty acid ratio showed a higher chance of improving glucose disturbances (2 51, 1.01-6.37) Conclusions: Our findings support the evidence of an independent protective effect of omega-3 fatty acid and of a higher omega-3:omega-6 fatty acid ratio on the glucose metabolism of high-risk individuals (C) 2010 Elsevier Inc All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To assess the nutritional status and dietary practices of 0-24-month-old children living in Brazilian Amazonia. Design: Cross-sectional study. Information oil children`s dietary intakes was obtained from diet history data. Weight and length Were measured for anthropometric evaluation. Fe status Was assessed Using fasting venous blood samples; Hb, serum ferritin and soluble tranferrin receptor concentrations were measured. Setting: The towns of Assis Brasil and Acrelandia in the state of Acre, north-west Brazil. Subjects: A total of sixty-nine randomly selected 0-24-month-old children. Results: Of these children, 40.3 % were anaemic, 63.1% were Fe-deficient, 28.1% had Fe-deficiency anaemia and 11.6% were stunted. Breast-feeding was initiated by 97.1% of mother followed by early feeding with complementary foods. The dietary pattern reflected a high intake of carbohydrate-rich foods and cow`s milk, with irregular intakes Of fruit, Vegetables and meat. All infants and 92.3% of toddlers were at risk Of inadequate Fe intakes. Fe from animal foods contributed Oil average 0.5% and 14.3% to total dietary Fe intake among infants and toddlers, respectively. Conclusions: Poor nutritional status and inadequate feeding practices in this study population reinforce the importance of exclusive breast-feeding during the first 6 months of life. Greater emphasis is required to improve the bioavailability of dietary Fe during complementary feeding practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein (western blotting) and gene (PCR) expressions, catalytic activity of puromycin-insensitive membrane-bound neutral aminopeptidase (APM/CD13) and in situ regional distribution of CD13 and FOS immunoreactivity (it) were evaluated in the hypothalamus of monosodium glutamate obese (MSG) and/or food deprived (FD) rats in order to investigate their possible interplay with metabolic functions. Variations in protein and gene expressions of CD13 relative to controls coincided in the hypothalamus of MSG and MSG-FD (decreased 2- to 17-fold). Compared with controls, the reduction of hypothalamic CD13 content reflected a negative balance in its regional distribution in the supraoptic, paraventricular, periventricular and arcuate nuclei. CD13-ir increased in the supraoptic nucleus in MSG (2.5-fold) and decreased in the paraventricular nucleus (2-fold) together with FOS-ir (1.5-fold) in FD. In MSG-FD. FOS-ir decreased (7-fold) in the paraventricular nucleus, while CD13-ir decreased in the periventricular (5.6-fold) and the arcuate (3.7-fold) nuclei. It was noteworthy that all these changes of CD13 were not related to catalytic activity of APM. Data suggested that hypothalamic CD13 plays a role in the regulation of energy metabolism not by means of APM enzyme activity. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Olfactory information modulates innate and social behaviors in rodents and other species. Studies have shown that the medial nucleus of the amygdala (MEA) and the ventral premammillary, nucleus (PMV) are recruited by conspecific odor stimulation. However, the chemical identity of these neurons is not determined. We exposed sexually inexperienced male rats to female or male odors and assessed Fos immunoreactivity (Fos-ir) in neurons expressing NADPH diaphorase activity (NADPHd, a nitric oxide synthase), neuropeptide Urocortin 3, or glutamic acid decarboxylase rnRNA (GAD-67, a GABA-synthesizing enzyme) in the MEA and PMV. Male and female odors elicited Fos-ir in the MEA and PMV neurons, but the number of Fos-immunoreactive neurons was higher following female odor exposure, in both nuclei. We found no difference in odor induced Fos-ir ill the MEA and PMV comparing fed and fasted animals. Ill the MEA, NADPHd neurons colocalized Fos-ir only in response to female odors. In addition, Urocortin 3 neurons comprise a distinct population and they do not express Fos-ir after conspecific odor stimulation. We found that 80% of neurons activated by male odors coexpressed GAD-67 mRNA. Following female odor, 50% of Fos neurons coexpressed GAD-67 rnRNA. The PMV expresses very little GAD-67, and virtually no colocalization with Fos was observed. We found intense NADPHd activity in PMV neurons, some of which coexpressed Fos-ir after exposure to both odors. The majority of the PMV neurons expressing NADPHd colocalized cocaine-and amphetamine-regulated transcript (CART). Our findings suggest that female and male odors engage distinct neuronal populations in the MEA, thereby inducing contextualized behavioral responses according to olfactory cues. In the PMV, NADPHd/CART neurons respond to male and female odors, suggesting a role in neuroendocrine regulation in response to olfactory cues. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dietary soy lecithin supplementation decreases hyperlipidemia and influences lipid metabolism. Although this product is used by diabetic patients, there are no data about the effect of soy lecithin supplementation on the immune system. The addition of phosphatidylcholine, the main component of lecithin, to a culture of lymphocytes has been reported to alter their function. If phosphatidylcholine changes lymphocyte functions in vitro as previously shown, then it could also affect immune cells in vivo. In the present study, the effect of dietary soy lecithin oil macrophage phagocytic capacity and on lymphocyte number in response to concanavalin A (ConA) stimulation was investigated in non-diabetic and alloxan-induced diabetic rats. Supplementation was carried Out daily with 2 g kg(-1) b.w. lecithin during 7 days. After that, blood was drawn from fasting rats and peritoneal macrophages and mesenteric lymph node lymphocytes were collected to determine the phospholipid content. Plasma triacylglycerol (TAG), total and HDL cholesterol and glucose levels were also determined. Lymphocytes were stimulated by Conk The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye reduction method and flow cytometry were employed to evaluate lymphocyte metabolism and cell number, respectively. Soy lecithin supplementation significantly increased both macrophage phagocytic capacity (+29%) in non-diabetic rats and the lymphocyte number in diabetic rats (+92%). It is unlikely that plasma lipid levels indirectly affect immune cells, since plasma cholesterol, TAG, or phospholipid content was not modified by lecithin supplementation. In Conclusion, lymphocyte and macrophage function were altered by lecithin supplementation, indicating ail immunomodulatory effect of phosphatidylcholine. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose transporter 4 (GLUT4) expression in adipose tissue decreases during fasting. In skeletal muscle, we hypothesized that GLUT4 expression might be maintained in a beta-adrenergic-dependent way to ensure energy disposal for contractile function. Herein we investigate beta-blockade or beta-stimulation effects on GLUT4 expression in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscles of fasted rats. Fasting increased GLUT4 mRNA in soleus (24%) and EDL (40%) but the protein content increased only in soleus (30%). beta 1-beta 2-, and beta 1-beta 2-beta 3-blockade decreased (20-30%) GLUT4 mRNA content in both muscles, although GLUT4 protein decreased only in EDL. When mRNA and GLUT4 protein regulations were discrepant, changes in the mRNA poly(A) tail length were detected, indicating a posttranscriptional modulation of gene expression. These results show that beta-adrenergic activity regulates GLUT4 gene expression in skeletal muscle during fasting, highlighting its participation in preservation of GLUT4 protein in glycolytic muscle. Muscle Nerve 40: 847-854, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycogen content of white and red skeletal muscles, cardiac muscle, and liver was investigated in conditions where changes in plasma levels of non-esterified fatty acids (NEFA) occur. The experiments were performed in fed and 12 and 48 h-fasted rats. The animals were also submitted to swimming for 10 and 30 min. Glycogen content was also investigated in both pharmacologically induced low plasma NEFA levels fasted rats and pharmacologically induced high plasma NEFA levels fed rats. The participation of Akt and glycogen synthase kinase-3 (GSK-3) in the changes observed was investigated. Plasma levels of NEFA, glucose, and insulin were determined in all conditions. Fasting increased plasma NEFA levels and reduced glycogen content in the liver and skeletal muscles. However, an increase of glycogen content was observed in the heart under this condition. Akt and GSK-3 phosphorylation was reduced during fasting in the liver and skeletal muscles but it remained unchanged in the heart. Our results suggest that in conditions of increased plasma NEFA levels, changes in insulin-stimulated phosphorylation of Akt and GSK-3 and glycogen content vary differently in liver, skeletal muscles, and heart. Akt and GSK-3 phosphorylation and glycogen content are decreased in liver and skeletal Muscles, but in the heart it remain unchanged (Akt and GSK-3 phosphorylation) or increased (glycogen content) due to consistent increase of plasma NEFA levels. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: Prolonged physical exercise induces adaptive alterations in the hypothalamic-pituitary axis, increasing cortisol metabolism, and reducing cortisol synthesis and glucocorticoid sensitivity. The mechanisms responsible for this relative glucocorticoid resistance remain unknown but may involve expression of genes encoding glucocorticoid receptor (GR) and/or inflammatory molecules of nuclear factor kappa B1 (NFkB1) signaling pathway and cytokines. This study aimed to determine the impact of prolonged physical training on the expression of genes involved in glucocorticoid action and inflammatory response. Methods: Normal sedentary male cadets of the Brazilian Air Force Academy were submitted to 6 weeks of standardized physical training. Eighteen of 29 initially selected cadets were able to fully complete the training program. Fasting glucose, insulin and cortisol levels, cytokine concentration and the expression of genes encoding GR, NFkB1, inhibitor of NFkB1 and IkB kinase A were determined before and after the training period. Results: Prolonged physical exercise reduced the basal cortisol levels and the percent cortisol reduction after dexamethasone. These findings were associated with a significant reduction in the mRNA levels of GR (6.3%), NFkB1 (63%), inhibitor of NFkB1 (25%) and IkB kinase A (46%) with concomitant reduction in cytokine concentrations (ELISA). Conclusions: Prolonged physical training decreases the glucocorticoid sensitivity and the mRNA levels of the GR gene combined with decreased mRNA of genes related to the NFkB pathway. Copyright (C) 2010 S. Karger AG, Basel